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ABSTRACT

Speaker identification for overlapped speech presents a great chal-
lenge for speaker diarization tasks in meeting scenarios. In order
to overcome such challenges, several overlap-aware resegmentation
methods based on deep learning have been integrated into speaker
diarization systems. In this paper we propose two multi-channel di-
arization systems which have enhanced capability in detecting over-
lapped speech and identify speakers via learning spatial features.
The first system applies a multi-look strategy to train networks with-
out given the speakers’ direction of arrival(DOA), and the other sys-
tem estimates the DOA of target speakers based on existing diariza-
tion results. Both systems aim to estimate the voice activity of speak-
ers in different directions to handle overlapped speech. Experimen-
tal results on the AMI corpus show that the relative improvements of
both systems can reach 9.4% and 18.1% in term of diarization error
rate (DER) against an overlap-aware single-channel system with a
BeamformIt front-end.

Index Terms— speaker diarization, direction of arrival, over-
lapped speech, multi-look, multi-channel

1. INTRODUCTION

Speaker diarization aims to determine “who spoke when” for a given
utterance. It has a practical value in extracting speech of a specific
speaker from spoken conversations such as meetings, interviews,
broadcast news, etc. [1]. In most cases, well-trained speaker em-
bedding extractors and clustering methods can afford the task [2].
However, overlapped speech mixing different speakers’ information
presents great challenges for both speaker identification [3] and di-
arization [4] tasks, especially in meeting scenarios.

To address these problems in overlapped speech, a popular ap-
proach is to train an overlapped speech detector to estimate the over-
lapped regions [5, 6]. Based on the estimated overlapped regions,
there are mainly two conventional methods that assign a second
speaker for overlapped speech: (1) VBx-2nd method [4] which uses
the speaker labels with second largest probability for assignment;
(2) the heuristic method [7] which finds the closest but different
speaker along the time axis for assignment. However, using only
acoustic features is often not sufficient for accurate identifications of
speakers in overlapped speech.

Since the locations of speakers can be used for discrimination,
several previous efforts have turned their focus to multi-channel
speech for speaker diarization. When the microphone array signals
are being processed by beamforming techniques to obtain enhanced
single-channel signals [8, 9], spatial features (e.g. DOA) can be es-
timated and combined with acoustic features for clustering [10, 11].
Certain statistic methods are also applied to utilize spatial features,
such as Kalman filters [10] and Hidden Markov Model (HMM) clus-
tering [12], to track the speaker’s location for diarization. However,
only few previous work implements deep learning on multi-channel

speaker diarization systems. In [13], a real-time speaker diarization
system is enhanced by incorporating spatial information. In [14],
a multi-channel target-speaker voice activity detection approach is
applied by combining diarization outputs from different channels.

In this paper, we present two deep learning based diarization sys-
tems for multi-channel meeting scenarios. One system uses a multi-
look strategy which gives several fixed look directions, covering the
panorama, to allow the network to learn specific spatial information
automatically. The other system tracks the DOA of target speak-
ers and uses estimated DOA to obtain activity information about the
speakers. To the best of our knowledge, this is among the first ef-
forts to present end-to-end overlapped speech detection networks for
multi-channel speech. The proposed systems utilize spatial informa-
tion to enable the assignment of more than 2 speakers for overlapped
speech and offer increased capability in speaker identification than
the conventional methods. When compared with a single-channel,
overlap-aware system with a BeamformIt front-end [8], the two pro-
posed systems can provide 9.4% and 18.1% relative improvements
in term of DER based on the AMI corpus[15]. We also investigate
the robustness of the approaches on an out-of-domain evaluation set.

The rest of the paper is organized as follows: Section 2 intro-
duces the network structure for multi-channel overlapped speech de-
tection. Section 3 and Section 4 describe the algorithms for over-
lapped speaker assignment in the two systems respectively. The de-
scription of the diarization system and datasets are given in section
5. The experimental results of our systems are analysed in section 6.
Finally, conclusions are drawn in section 7.

2. MULTI-CHANNEL OVERLAPPED SPEECH DETECTOR

Fig. 1. Multi-channel overlapped speech detector.

Figure 1 shows the network structure for overlapped speech de-
tection with a microphone array, where several features can be ex-
tracted from the signals. The logarithm power spectrum (LPS) is
obtained from the magnitude of the spectrograms from the wave-
form of each channel. To obtain the spatial features, we first indicate
several microphone pairs {m̄ = (m1,m2)}. Then the inter-channel
phase difference (IPD) can be computed as follows:

IPDm̄(t, f) = ∠Ym1(t, f)− ∠Ym2(t, f), (1)
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Fig. 2. AF energy distribution of different speakers along the time
axis (first 20 seconds of ES2002c meeting). (The top part represents
the reference diarization annotation.)

where ∠Ym denotes the phase of the complex spectrogram obtained
from the m-th channel. The location-guide angle feature (AF) [16]
gives more specific spatial information about the sound intensity
from the look direction θ, which is computed as:

AFθ(t, f) =
∑

m̄
cos(∠vm̄θ (f)− IPDm̄(t, f)), (2)

where ∠vm̄θ (f) = 2πf∆m̄ cos(θm̄)/c denotes the phase differences
between the selected microphone pair for direction θ at frequency f ,
∆m̄ is the distance between the selected microphone pair, θm̄ is the
relative angle between the look direction θ and the microphone pair
m̄, and c is the sound velocity. As shown in Figure 2, the AF has
high correlation with the speaker activity along the time axis.

The LPS, IPD and AF are concatenated as the input to the tem-
poral convolutional network (TCN) blocks, which have been applied
in the successful Conv-Tasnet [17]. The decoders are composed of
transposed convolution layers, and N output ports give the activ-
ity information of speakers in different directions, which are de-
noted as ŷvad = {ŷvad

i }Ni=1. Finally the activity of the overlapped
speech ŷosd can be determined from the second largest value, i.e.,
ŷosd = max2nd{ŷvad

i }Ni=1.
However, in the above process, M look directions {θ}Mi=1 need

to be given as the prior information. As shown in Figure 1, we ap-
ply two approaches to provide the look directions: (1) One uses the
multi-look strategy [18] which gives several look directions cover-
ing the panorama and allow the network to learn the specific spatial
information automatically; and (2) referred as target-DOA, uses the
estimated DOA of N target speakers to obtain ŷvad.

3. MULTI-LOOK SYSTEMS

The multi-look approach does not require the accurate DOA to com-
pute AF. Instead, we select M = 4 look directions on the horizontal
plane to cover the panorama, that is, θ ∈ {0, 0.5π, π, 1.5π}.

3.1. Training loss function of the network

Since we do not restrict the order of the outputs for speakers, permu-
tation invariant training (PIT) is applied to compute the loss function.
Given the reference VAD of speakers yvad, it can be written as

loss = min
perm(ŷvad)

BCE(perm(ŷvad),yvad)+α∗BCE(ŷosd,yosd) (3)

where perm(·) is the permutation operation for PIT, the first com-
ponent loss is the binary cross entropy (BCE) loss of VAD for each
speaker, and the second component loss expects the network to focus
more on overlapped speech detection with weight α.

3.2. Resegmentation algorithm for overlapped speech

The speaker assignment algorithm for multi-look systems is moti-
vated by the heuristic method [7], and we call it heuristic++. The

underlying idea is that the speech activity detected from the same
output port within a short duration is more likely to originate from
the same direction (speaker). The activity regions VADest are first
computed based on ŷvad with a threshold. Then, to incorporate the
overlaps into an existing initialization diarization result Dinit (e.g,
the result from a VBx baseline system [7]), the resegmentation algo-
rithm applies the following three steps.

Step 1: Align the VADest into a common space according to
Dinit . Within each short duration of length dt, select a permuta-
tion order of VADest that best matches the existing result Dinit by
computing their BCE. Based on the permutation order, assign the
speaker labels from Dinit to the matched active regions in VADest.

Step 2: After processing the whole recording, search for the re-
maining unlabeled but active regions and assign them with the near-
est speaker labels from the same output port.

Step 3: If there exists overlapped regions from different ports
but labeled with the same speaker, re-allocate the overlapped regions
with the nearest but different speaker labels along the time axis.

Figure 3 gives an example for our algorithm, where the circled
numbers ahead of each assignment denote the step in the algorithm.

Fig. 3. An example for heuristic++ algorithm, where Dref refers to
reference annotations. Note that the overlapped region in VADest4

was first assigned to Speaker 1 at Step 2 but re-allocated to Speaker
3 at Step 3 to avoid the duplication with the region in VADest3 .

4. TARGET-DOA SYSTEMS

In target-DOA systems, accurate DOA information of each speaker
are required when computing the AF. To track the DOA, we first use
the multiple signal classification (MUSIC) method [19, 20] to esti-
mate DOA with a 2-second slide window. Then, we apply an exist-
ing diarization result (e.g, the result from a VBx baseline system) to
label the active regions for different speakers. Figure 4 shows the es-
timated DOA along the time axis based on the reference diarization
annotations, where each color represents a different speaker. It can
be found that the speakers did not always stay at the same places but
changed locations during the meeting.1 Meanwhile, the estimated
DOA often has undesirable burr which may be caused by noise, over-
laps or short active duration. Thus, during evaluation, we filter out
the active segments of short duration , silence and overlapped speech
(if detected) according to the existing diarization results to obtain the
reliable estimation of DOA. Finally, the estimated DOA is averaged
for every minute to track speakers.

During training, we use a loss computation similar to Eq(3) ex-
cept that no perm(·) is applied, and the output ŷvad should have cor-
rect activity information according to ŷvad with the given DOA, i.e.,
loss = BCE(ŷvad,yvad) + α ∗ BCE(ŷosd,yosd).

1As observed from recorded videos, the participants might exchange seats
or walk to the blackboard for discussing.
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Table 1. Meetings selected from the AMI corpus
Meeting Num. Dur. (h) Overlap ratio(%)

Training set ES2002, ES2005, ES2006, ES2007, ES2008, ES2009, ES2010, ES2012, ES2013,
ES2015, ES2016, EN2001b, EN2003, EN2004a, EN2005a, EN2006, EN2009

53 30.25 15.41

Development set ES2003, ES2011 8 3.93 11.86
Evaluation set ES2004, ES2014, EN2002 12 7.14 19.00
Evaluation set (out-of-domain) IS1008, IS1009 8 3.37 10.59

Fig. 4. Estimated DOA (ES2002c meeting).

The speaker assignment algorithm for the target-DOA systems
is similar to the heuristic++ in multi-look systems except that at
Step 1 the permutation order of VADest is selected within the whole
duration of the meeting. For convenience, we call it permutation
algorithm in the following experiments.

5. EXPERIMENTAL SETUP

We use the AMI corpus [15] for experimentation. The training set,
development set and evaluation set are divided according to full-
corpus partitions2 which are recorded at the Edinburgh room and
consist of at most four speakers in each file. The details (duration and
the overlap ratios) of the datasets are shown in Table 1. To evaluate
the robustness of the systems, an out-of-domain dataset composed
of the meetings recorded at the Idiap room is tested with a different
room size and DOA distribution. In both rooms, eight-element cir-
cular microphone arrays with 10cm radius are placed in the center
of the meeting room table between the speakers. We assume that
different speakers are located in different directions.

5.1. VBx baseline diarization system

In the VBx baseline diarization system [7], the segments are ex-
tracted by a fixed-length window of 1.5 seconds with a slide over-
lap of 1.25 seconds, and an 101-layer residual neural network
(ResNet)[21] with inputs of 64-dimensional log Mel filter bank
features are used for extracting embeddings. VoxCeleb1 and Vox-
Celeb12 [22] and CN-CELEB [23] are used as the training datasets
with data augmentation from the MUSAN and RIR corpus.

For clustering, we apply the spectrum clustering method with
the number of clusters set to 4, and the VBx method [2] is followed
for refinement without handling overlaps.

5.2. DOA estimation and data augmentation for training set

In order to obtain reliable DOA information while training the the
target-DOA systems, we use the reference diarization annotations
and the moving track of the speakers observed from the videos to
process the estimated DOA based on the MUSIC method. For eval-
uation, we use existing diarization results to process estimated DOA.

2https://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml

To balance the probability of overlapped speech and non-
overlapped speech, we apply data augmentation for multi-channel
speech using on-the-fly mode. 50% of the training segments are
artificially made by summing two chunks cropped from the same
meetings, and the signal-to-signal ratios are sampled between 0 and
5dB. We discard the artificial mixtures having the overlaps from
same speakers to avoid spatial information aliasing. The training
segments are of fixed-length of 4 seconds.

5.3. Implementation details

We use 257-dimensional LPSs extracted from the spectrograms with
512-length window and 50% hop ratio as input features. IPDs are
computed from the 4 microphone pairs, i.e., (1, 5), (2, 6), (3, 7) and
(4, 8). The networks are trained on short segments with fixed 4-
second length. The number of the look directions M and the output
portsN are both set to 4. The configuration of TCN blocks are given
as follows: bottleneck size B = 256, number of channels H = 512 in
the convolutional blocks with kernel size P = 3. The learning rate is
set to 1e-4 with Adam optimizer. ReduceLROnPlateau schedule and
early stop are also adopted.

When applying the heuristic++ algorithm, the segment duration
dt in Step 1 is set to 4 seconds which is equal to the length of training
segments. To obtain stable DOA estimates for target-DOA systems,
the duration threshold to filter out short active segments is empirical
set to 5 seconds.

6. RESULTS AND ANALYSIS

6.1. Overlapped speech detection

We first evaluate the accuracy of overlapped speech detection. As
shown in Table 2, setting α = 0.5 for overlapped speech detection
loss in Eq(3) can lower the error rates for all systems.

Among the multi-look systems, the accuracy can be gradually
improved by concatenating the spatial features (e.g. IPD and AF)
with the amplitude features (LPS). For target-DOA systems, it is
straightforward to find that the quality of estimated DOA informa-
tion has a high impact on the detection accuracy. Compared with the
systems using reference diarization annotations, diarization results
from the VBx baseline system cannot obtain very accurate DOA due
to unlabeled overlaps and speaker confusion errors, which leads to
high detection error rate. However, we will show later that, even
with poor detection performance, the target-DOA systems still bring
significant improvement to the existing baseline results on account
of the directional input features.

6.2. Speaker diarization with handling overlaps

Table 3 shows the diarization results for both the development set
and evaluation set in term of DER and Jaccard error rate (JER),
where no forgiveness collar is used. To focus on the overlaps han-
dling, we use oracle VAD in all systems.
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Table 2. Overlapped speech detection in term of Miss(%), False alarm(%) and Error(%). DOA i denotes the DOA estimated with initial
diarization results from the VBx baseline system and DOA r denotes the DOA estimated with reference diarization annotations.

α=0.0 α=0.5
Overlapped Development set Evaluation set Development set Evaluation set
speech detector Input features MISS FA Error MISS FA Error MISS FA Error MISS FA Error
Multi-look LPS 7.17 1.57 8.74 11.65 1.52 13.17 6.90 1.71 8.61 11.02 1.49 12.51
Multi-look LPS,IPD 5.81 1.43 7.24 8.25 2.54 10.78 5.49 1.42 6.91 8.05 2.26 10.31
Multi-look LPS,IPD,AF 4.56 1.94 6.49 6.65 1.89 8.54 4.77 1.67 6.44 6.06 2.33 8.39
Target-DOA LPS,IPD,AF, DOA i 6.60 1.83 8.42 8.61 2.10 10.72 5.09 2.35 7.44 6.18 3.72 9.90
Target-DOA LPS,IPD,AF, DOA r 4.53 1.52 6.05 5.32 2.56 7.88 4.02 1.87 5.89 4.63 3.06 7.69

Table 3. Diarization results in term of DER(%) and JER(%) with oracle VAD. Permutation i method uses the DOA estimated with the initial
diarization results from System 4, Permutation r method uses the DOA estimated on the reference diarization annotations and Permuta-
tion r m method uses the DOA estimated with the reference diarization annotations and movement times of speakers

Use Overlapped Development set Evaluation set
No. BeamformIt speech detector Method FA MISS SC DER JER FA MISS SC DER JER

1 ! - (Baseline1) 0.00 14.84 7.50 22.34 32.35 0.00 22.17 5.70 27.88 33.51
2 !

Pyannote2.0
VBx-2nd 2.27 10.18 9.19 21.64 32.23 1.66 14.29 9.05 25.00 31.94

3 ! Heuristic 2.26 10.21 8.77 21.24 31.46 1.66 14.31 7.66 23.63 30.49
4 % - (Baseline2) 0.00 14.84 10.19 25.03 36.59 0.00 22.17 7.64 29.82 36.86
5 %

Multi-look
VBx-2nd 1.58 7.96 12.79 22.30 35.13 1.26 15.13 10.18 26.58 34.64

6 % Heuristic 1.58 7.96 12.34 21.87 34.48 1.26 15.13 9.42 25.83 33.89
7 % Heuristic++ 2.59 7.06 10.40 20.05 31.75 3.13 8.85 9.44 21.42 29.99
8 % Target-DOA Permutation i 3.44 7.33 7.67 18.43 27.72 5.30 8.72 5.35 19.36 24.51
9 %

Target-DOA
Permutation r 4.43 6.33 5.11 15.87 23.77 4.20 6.85 3.34 14.38 19.87

10 % Permutation r m 2.81 6.04 3.03 11.87 16.83 3.99 6.76 2.69 13.43 17.57

We apply beamforming for System 1∼3 with the BeamformIt
tool [8] to obtain enhanced single-channel speech. Then, the pyan-
note2.0 [6] network trained with AMI Mix-Headset data is applied
for overlapped speech detection. The VBx-2nd method and heuris-
tic method applied in System 2 and System 3 reduces the miss error
rate, but the speaker confusion (SC) error increases at the same time.

In other remaining systems, no BeamformIt is applied to en-
hance the signals. System 4 uses the first channel of the microphone
array for single-channel diarization, and the results are used as the
initial diarization results for the following System 5∼8. When com-
paring the performance of System 1 and System 4, we can find that
beamforming can greatly reduce the SC error. However, only using
beamforming in the front-end does not make a full use of spatial in-
formation in the diarization task. In System 5∼7, the multi-look de-
tectors with spatial information inputs can provide much lower miss
error rate, and the proposed heuristic++ algorithm enables better
speaker identification capability, the effectiveness of which is appar-
ent when compared with conventional second speaker assignment
methods. For target-DOA detectors, it is surprising to find that spec-
ifying the DOA of speakers can obtain an excellent DER reduction.
Compared with the overlap-aware resegmentation algorithms in Sys-
tem 4∼7, using permutation algorithm with target-DOA detectors
can have no degradation but improvement for SC error. In this way,
System 8 can obtain relative 13.2% and 18.1% improvement of DER
against System 3 using BeamformIt on the development and evalua-
tion sets respectively.

6.3. Robustness of the proposed systems

In this section, we evaluate the robustness of the proposed systems,
where an out-of-domain evaluation set is recorded in a different
room with the training set. As shown in Table 4, the mismatch
of the spatial features between the training set and evaluation set
cause great degradation for the multi-look system, which reflects

the weakness of the data-driven approach in out-of-domain data.
However, target-DOA systems still provide robust improvement on
the baseline system as long as the estimated DOA is largely correct.
Compared with the single-channel system with BeamformIt and
pyannote2.0 (Baseline1), target-DOA system can still obtain 10.5%
and 22.2% relative improvement of DER and JER respectively.

Table 4. Diarization results in term of DER(%) and JER(%) on the
out-of-domain evaluation set with oracle VAD.

Overlaps Evaluation set (out-of-domain)
Detector Method FA MISS SC DER JER

- (Baseline1) 0.00 12.81 2.57 15.38 21.39
Pyannote2.0 Heuristic 1.02 8.21 3.89 13.12 19.79

- (Baseline2) 0.00 12.81 2.82 15.63 21.77
Multi-look Heuristic++ 3.15 12.48 27.79 43.42 56.58

Target-DOA Heuristic 1.29 8.08 4.34 13.71 20.59
Target-DOA Permutation i 2.01 7.83 1.90 11.74 15.39

7. CONCLUSION AND FUTURE WORK

In this paper, we present multi-channel systems using multi-look
and target-DOA approaches for overlap-aware diarization tasks in
meeting scenarios. Several speaker assignment algorithms are inves-
tigated for overlapped speech and obtain remarkable improvement
against conventional methods. Experimentation shows that there is
still plenty of room for improvement when comparing System 8 and
System 9∼10 which use reference diarization annotations to esti-
mate DOA. In the future, we will attempt to improve the DOA esti-
mation method and try to use simulated speech for training.
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